Unsupervised Learning

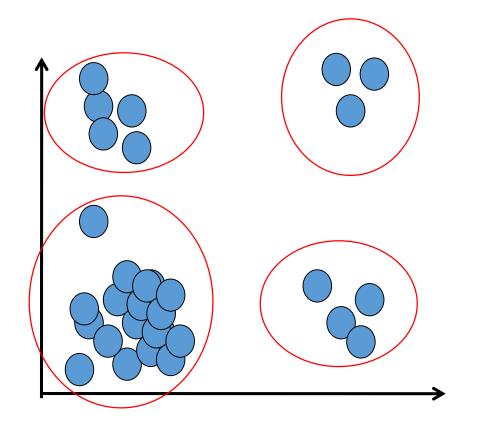
Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Content

- Motivation
- Introduction
- Applications
- Types of clustering
- Clustering criterion functions
- Distance functions
- Normalization
- Which clustering algorithm to use?
- Cluster evaluation
- Summary

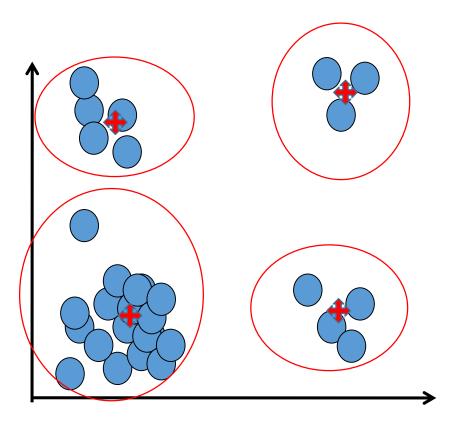
Motivation



- The goal of clustering is to
 - group data points that are close (or similar) to each other
 - identify such groupings (or clusters) in an **unsupervised** manner
- How to define similarity ?
- How many iterations for checking cluster quality ?

- Supervised learning: discover patterns in the data with known target (class) or label.
 - These patterns are then utilized to predict the values of the target attribute in future data instances.
 - Examples ?
- Unsupervised learning: The data have no target attribute.
 - We want to explore the data to find some intrinsic structures in them.
 - Can we perform regression here ?
 - Examples ?

Cluster



- A cluster is represented by a single point, known as centroid (or cluster center) of the cluster.
- Centroid is computed as the mean of all data points in a cluster

$$C_j = \sum x_i$$

 Cluster boundary is decided by the farthest data point in the cluster.

- Example 1: groups people of similar sizes together to make "small", "medium" and "large" T-Shirts.
 - Tailor-made for each person: too expensive
 - One-size-fits-all: does not fit all.
- Example 2: In marketing, segment customers according to their similarities
 - To do targeted marketing.
- Example 3: Given a collection of text documents, we want to organize them according to their content similarities,
 - To produce a topic hierarchy

Content

- Motivation
- Introduction
- Applications
- Types of clustering
- Clustering criterion functions
- Distance functions
- Normalization
- Which clustering algorithm to use?
- Cluster evaluation
- Summary

Types of clustering

- Clustering: Task of grouping a set of data points such that data points in the same group are more similar to each other than data points in another group (group is known as cluster)
 - it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.

Types:

- 1. Exclusive Clustering: K-means
- 2. Overlapping Clustering: Fuzzy C-means
- 3. Hierarchical Clustering: Agglomerative clustering, divisive clustering
- 4. Probabilistic Clustering: Mixture of Gaussian models

1. Exclusive clustering: K-means

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 - 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
 - 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
 - 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 - 4. If c_i have changed, repeat Step 2

Properties

- Will always converge to some solution
- Can be a "local minimum"
 - does not always find the global minimum of objective function:

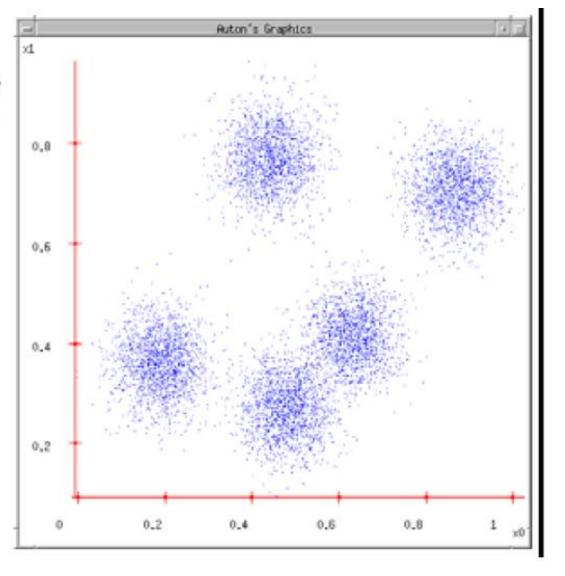
$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

• Algorithm

K-means example

K-means

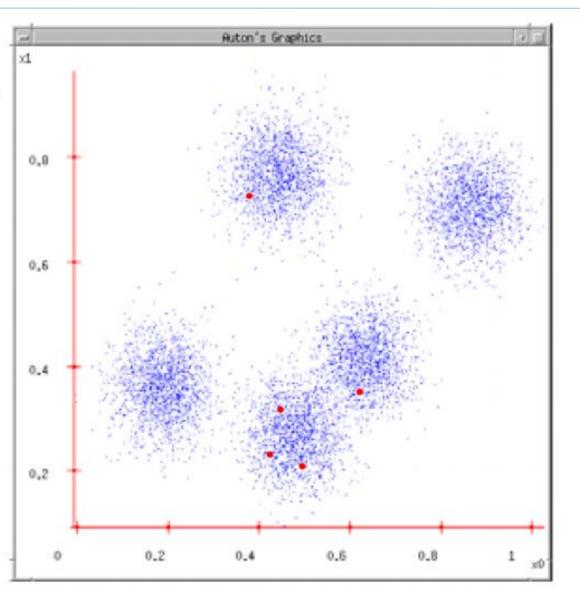
 Ask user how many clusters they'd like. (e.g. k=5)



Example contd..

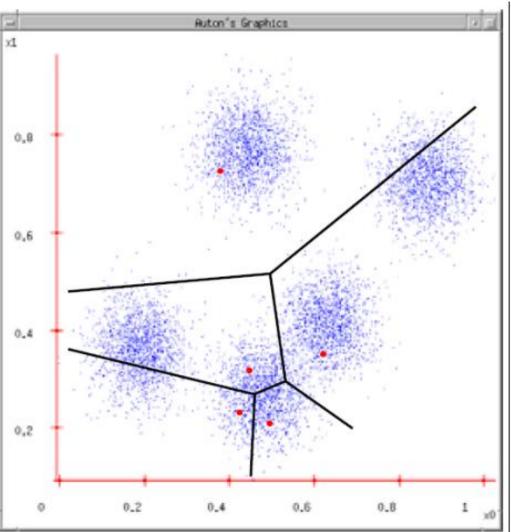
K-means

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations



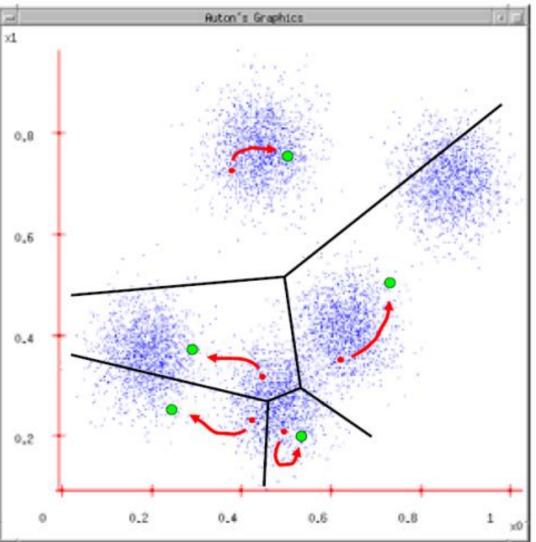
K-means

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)



K-means

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to.
- Each Center finds the centroid of the points it owns

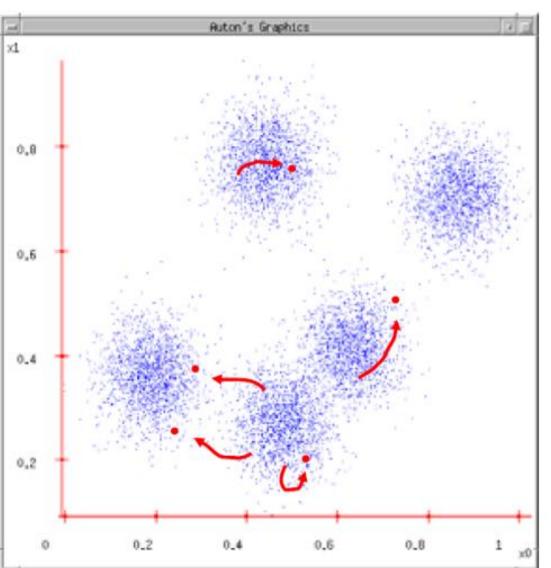


This slide is taken from: Andrew Moore

Example contd..

K-means

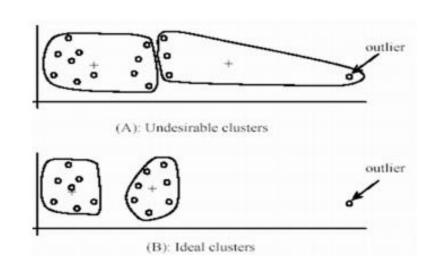
- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
-Repeat until terminated!

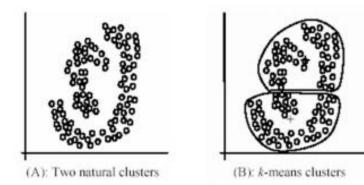


This slide is taken from: Andrew Moore

Contd..

- Pros
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error
- Cons
 - Setting k?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters
 - Assuming means can be computed





2. Fuzzy C-Means Clustering

- One data point may belong to two or more cluster with different memberships.
- Objective function:

$$J = \sum_{j=1}^{K} \sum_{i=1}^{n} u_{i,j}^{m} ||x_{i}^{j} - c_{j}||^{2}$$

where $1 \le m < \infty$

• An extension of k-means

Fuzzy c-means algorithm

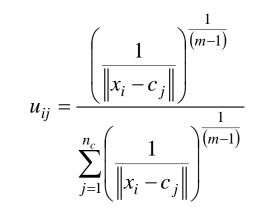
- Let x_i be a vector of values for data point g_i .
- 1. Initialize membership $U^{(0)} = [u_{ij}]$ for data point g_i of cluster cl_j by random
- 2. At the *k*-th step, compute the fuzzy centroid $C^{(k)} = [c_j]$ for j = 1, ..., nc, where *nc* is the number of clusters, using

$$c_{j} = \frac{\sum_{i=1}^{n} (u_{ij})^{m} x_{i}}{\sum_{i=1}^{n} (u_{ij})^{m}}$$

where *m* is the fuzzy parameter and *n* is the number of data points.

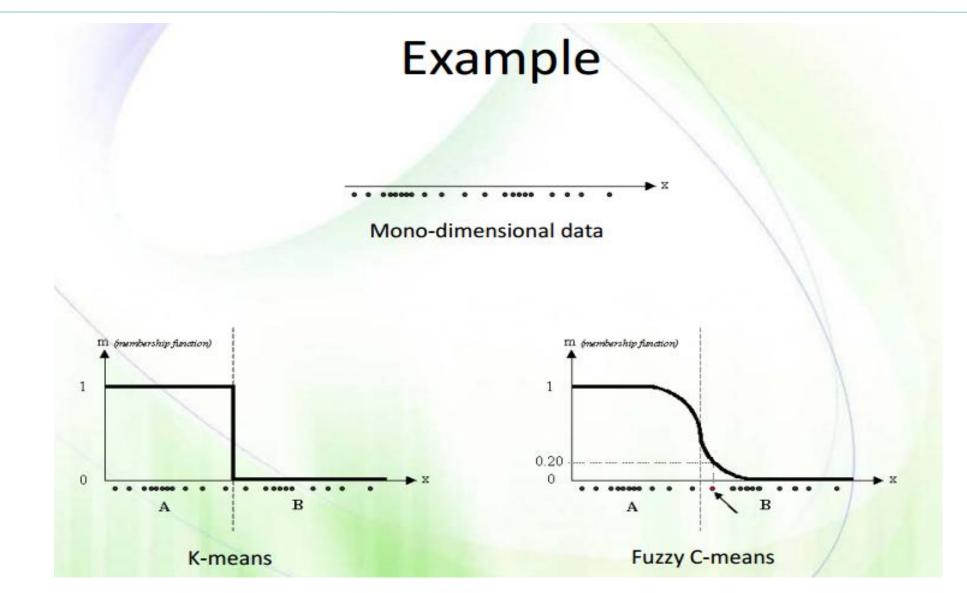
Fuzzy c-means algorithm

3. Update the fuzzy membership $U^{(k)} = [u_{ij}]$, using



- 4. If $||U^{(k)} U^{(k-1)}|| < \varepsilon$, then STOP, else return to step 2.
- 5. Determine membership cutoff
 - For each data point g_i , assign g_i to cluster cl_i if u_{ii} of $U^{(k)} > \alpha$

Example

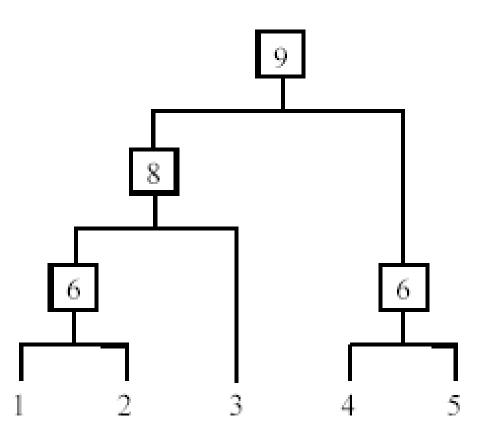


Fuzzy c-means

- Pros:
 - Allows a data point to be in multiple clusters
 - A more natural representation of the behavior of genes
 - genes usually are involved in multiple functions
- Cons:
 - Need to define c (k in K-means), the number of clusters
 - Need to determine membership cutoff value
 - Clusters are sensitive to initial assignment of centroids
 - Fuzzy c-means is not a deterministic algorithm

3. Hierarchical Clustering

• Produce a nested sequence of clusters, a tree, also called **Dendrogram**.



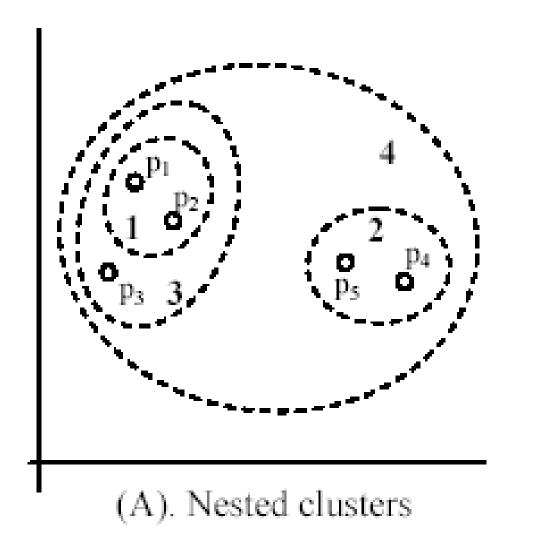
- Agglomerative (bottom up) clustering: It builds the dendrogram (tree) from the bottom level, and
 - merges the most similar (or nearest) pair of clusters
 - stops when all the data points are merged into a single cluster (i.e., the root cluster).
- Divisive (top down) clustering: It starts with all data points in one cluster, the root.
 - Splits the root into a set of child clusters. Each child cluster is recursively divided further
 - stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point

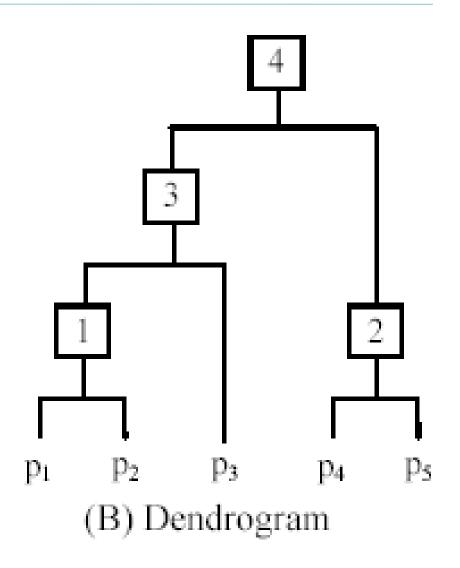
It is more popular then divisive methods.

- At the beginning, each data point forms a cluster (also called a node).
- Merge nodes/clusters that have the least distance.
- Go on merging
- Eventually all nodes belong to one cluster
- Example:

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/hie rarchical.html

An example: working of the algorithm





Hierarchical clustering

• Pros

- Dendograms are great for visualization
- Provides hierarchical relations between clusters
- Shown to be able to capture concentric clusters
- Cons
 - Not easy to define levels for clusters
 - Experiments showed that other clustering techniques outperform hierarchical clustering

4. Probabilistic clustering

• Gaussian mixture models

Content

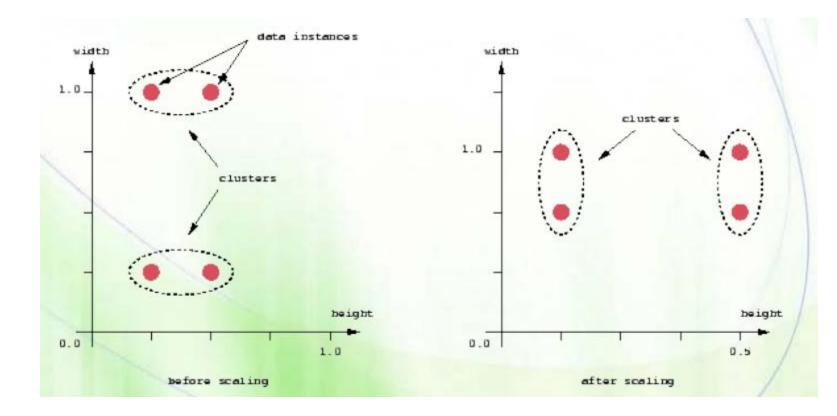
- Motivation
- Introduction
- Applications
- Types of clustering
- Clustering criterion functions
- Distance functions
- Data standardization
- Which clustering algorithm to use?
- Cluster evaluation
- Summary

Clustering criterion ..

- 1. Similarity function
- 2. Stopping criterion
- 3. Cluster Quality

1. Similarity function / Distance measure

- How to find distance b/w data points
- Euclidean distance:
 - Problems with Euclidean distance



Euclidean distance and Manhattan distance

Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{(x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}}$$

Manhattan distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ir} - x_{jr}|$$

• Weighted Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{w_{1}(x_{i1} - x_{j1})^{2} + w_{2}(x_{i2} - x_{j2})^{2} + \dots + w_{r}(x_{ir} - x_{jr})^{2}}$$

Squared distance and Chebychev distance

• Squared Euclidean distance: to place progressively greater weight on data points that are further apart.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}$$

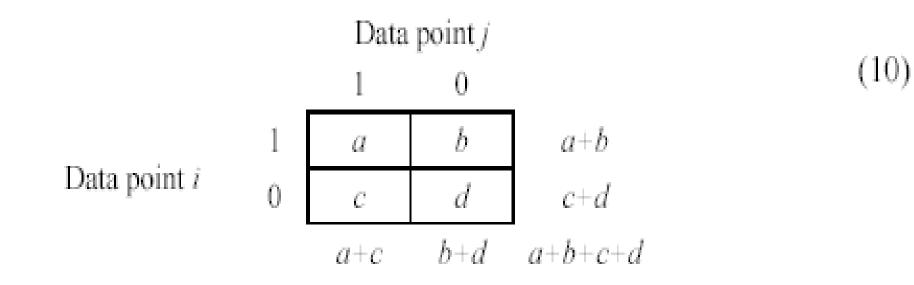
• Chebychev distance: one wants to define two data points as "different" if they are different on any one of the attributes.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \max(|x_{i1} - x_{j1}|, |x_{i2} - x_{j2}|, ..., |x_{ir} - x_{jr}|)$$

Distance functions for binary and nominal attributes

- Binary attribute: has two values or states but no ordering relationships, e.g.,
 - Gender: male and female.
- We use a confusion matrix to introduce the distance functions/measures.
- Let the *i*th and *j*th data points be **x**_{*i*} and **x**_{*i*} (vectors)

Confusion matrix



- a: the number of attributes with the value of 1 for both data points.
- *b*: the number of attributes for which $x_{if} = 1$ and $x_{jf} = 0$, where $x_{if}(x_{jf})$ is the value of the *f*th attribute of the data point $\mathbf{x}_i(\mathbf{x}_j)$.
- c: the number of attributes for which $x_{if} = 0$ and $x_{if} = 1$.
- d: the number of attributes with the value of 0 for both data points.

Contd..

• Cosine similarity

$$\cos(x, y) = \frac{x \cdot y}{|x| \cdot |y|}$$

• Euclidean distance

$$d(x,y) = \sqrt{\sum (x_i - y_i)^2}$$

• Minkowski Metric

$$d_p(x_i, y_j) = \left(\sum_{k=1}^d |x_{i,k} - x_{i,k}|^p\right)^{\frac{1}{p}}$$

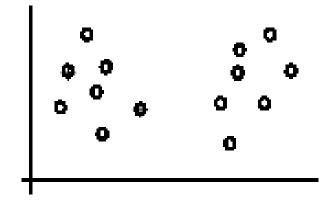
2. Stopping criteria

- 1. no (or minimum) re-assignments of data points to different clusters,
- 2. no (or minimum) change of centroids, or
- 3. minimum decrease in the **sum of squared error** (SSE),

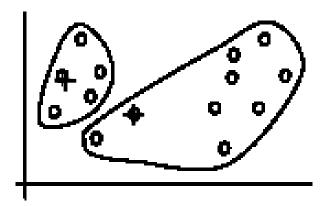
$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$

C_i is the *j*th cluster, m_j is the centroid of cluster C_j (the mean vector of all the data points in C_j), and dist(x, m_j) is the distance between data point x and centroid m_j.

An example



(A). Random selection of k centers

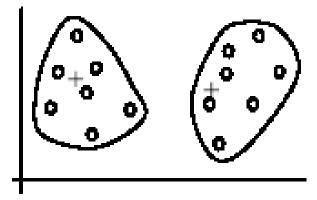


Iteration 1: (B). Cluster assignment

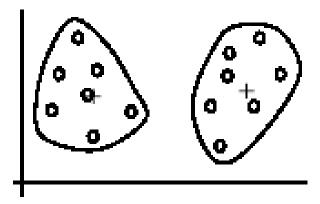


(C). Re-compute centroids

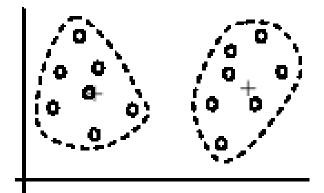
An example (cont ...)



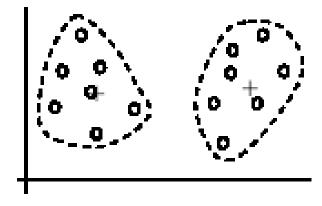
Iteration 2: (D). Cluster assignment



Iteration 3: (F). Cluster assignment



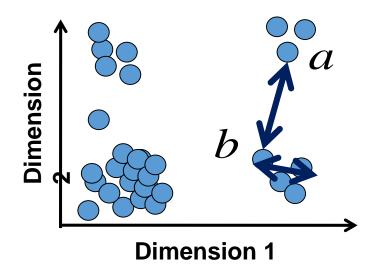
(E). Re-compute centroids



(G). Re-compute centroids

3. Cluster quality

- Intra-cluster cohesion (compactness):
 - Cohesion measures how near the data points in a cluster are to the cluster centroid.
 - Sum of squared error (SSE) is a commonly used measure.
- Inter-cluster separation (isolation):
 - Separation means that different cluster centroids should be far away from one another.



- Motivation
- Introduction
- Applications
- Types of clustering
- Clustering criterion functions
- Distance functions
- Normalization
- Which clustering algorithm to use?
- Cluster evaluation
- Summary

- Technique to force the attributes to have a common value range
- What is the need ?
 - Consider the following pair of data points

x_{*i*}: (0.1, 20) and **x**_{*j*}: (0.9, 720).

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(0.9 - 0.1)^2 + (720 - 20)^2} = 700.000457$$

• Two main approaches to standardize interval scaled attributes, range and z-score. *f* is an attribute

$$range(x_{if}) = \frac{x_{if} - \min(f)}{\max(f) - \min(f)},$$

Contd..

 Z-score: transforms the attribute values so that they have a mean of zero and a mean absolute deviation of 1. The mean absolute deviation of attribute *f*, denoted by *s_f*, is computed as follows

$$m_f = \frac{1}{n} \left(x_{1f} + x_{2f} + \dots + x_{nf} \right),$$

$$s_f = \frac{1}{n} \left(|x_{1f} - m_f| + |x_{2f} - m_f| + \dots + |x_{nf} - m_f| \right),$$

Z-score:
$$z(x_{if}) = \frac{x_{if} - m_f}{s_f}$$
.

- Motivation
- Introduction
- Applications
- Types of clustering
- Clustering criterion functions
- Distance functions
- Normalization
- Which clustering algorithm to use?
- Cluster evaluation
- Summary

How to choose a clustering algorithm

- A vast collection of algorithms are available. Which one to choose for our problem ?
- Choosing the "best" algorithm is a challenge.
 - Every algorithm has limitations and works well with certain data distributions.
 - It is very hard, if not impossible, to know what distribution the application data follow. The data may not fully follow any "ideal" structure or distribution required by the algorithms.
 - One also needs to decide how to standardize the data, to choose a suitable distance function and to select other parameter values.

- Due to these complexities, the common practice is to
 - run several algorithms using different distance functions and parameter settings, and
 - then carefully analyze and compare the results.
- The interpretation of the results must be based on insight into the meaning of the original data together with knowledge of the algorithms used.
- Clustering is highly application dependent and to certain extent subjective (personal preferences).

- Motivation
- Introduction
- Applications
- Types of clustering
- Clustering criterion functions
- Distance functions
- Normalization
- Which clustering algorithm to use?
- Cluster evaluation
- Summary

Cluster Evaluation: hard problem

- The quality of a clustering is very hard to evaluate because
 - We do not know the correct clusters
- Some methods are used:
 - User inspection
 - Study centroids, and spreads
 - Rules from a decision tree.
 - For text documents, one can read some documents in clusters.

Cluster evaluation: ground truth

- We use some labeled data (for classification)
- Assumption: Each class is a cluster.
- After clustering, a confusion matrix is constructed. From the matrix, we compute various measurements, entropy, purity, precision, recall and F-score.
 - Let the classes in the data D be C = (c₁, c₂, ..., c_k). The clustering method produces k clusters, which divides D into k disjoint subsets, D₁, D₂, ..., D_k.

Entropy: For each cluster, we can measure its entropy as follows:

$$entropy(D_i) = -\sum_{j=1}^{k} \Pr_i(c_j) \log_2 \Pr_i(c_j),$$
(29)

where $Pr_i(c_j)$ is the proportion of class c_j data points in cluster *i* or D_i . The total entropy of the whole clustering (which considers all clusters) is

$$entropy_{total}(D) = \sum_{i=1}^{k} \frac{|D_i|}{|D|} \times entropy(D_i)$$
(30)

Purity: This again measures the extent that a cluster contains only one class of data. The purity of each cluster is computed with

$$purity(D_i) = \max_j(\Pr_i(c_j))$$
(31)

The total purity of the whole clustering (considering all clusters) is

$$purity_{total}(D) = \sum_{i=1}^{k} \frac{|D_i|}{|D|} \times purity(D_i)$$
(32)

Indirect evaluation

- In some applications, clustering is not the primary task, but used to help perform another task.
- We can use the performance on the primary task to compare clustering methods.
- For instance, in an application, the primary task is to provide recommendations on book purchasing to online shoppers.
 - If we can cluster books according to their features, we might be able to provide better recommendations.
 - We can evaluate different clustering algorithms based on how well they help with the recommendation task.
 - Here, we assume that the recommendation can be reliably evaluated.

- Motivation
- Introduction
- Applications
- Types of clustering
- Clustering criterion functions
- Distance functions
- Normalization
- Which clustering algorithm to use?
- Cluster evaluation
- Summary

Summary

- Studied need for unsupervised learning
- Types of clustering:
 - K-means, Fuzzy C, hierarchical
- Similarity functions:
 - Euclidean distance, Manhattan distance
- Stopping criteria:
 - SSD
- Which algorithm to choose ?
- Cluster evaluation

<u>http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/Apple_tKM.html</u>

Thank you Contact: Anil Sharma <u>anils@iiitd.ac.in</u> Office hours: Mondays 2:00-3:00 PM